Code your own blockchain mining algorithm in Go! by ...

Simple, privacy-focused, scalable MimbleWimble chain implementation.

A subreddit for discussing the Grin cryptocurrency based on the MimbleWimble whitepaper.
[link]

Devcoin: ethically inspired cryptocurrency

A community based around the Devcoin cryptocurrency, an ethically inspired project created to help fund FOSS developers, artists, musicians, writers and more.
[link]

Win the big prize!

JackpotCoin is a new cryptocurrency with a fun incentive to mine.
[link]

My Bitcoin trading algorithm live results - 54.33% accuracy, 3.9+ sharpe ratio, seeking thoughts/feedback/improvements/things to add. Commission fees are destructive so looking to sell the source code and app to a whale with free trading. Making a presentation of statistical figures/selling points

submitted by ChaosRunner3D to algotrading [link] [comments]

Ultimate glossary of crypto currency terms, acronyms and abbreviations

I thought it would be really cool to have an ultimate guide for those new to crypto currencies and the terms used. I made this mostly for beginner’s and veterans alike. I’m not sure how much use you will get out of this. Stuff gets lost on Reddit quite easily so I hope this finds its way to you. Included in this list, I have included most of the terms used in crypto-communities. I have compiled this list from a multitude of sources. The list is in alphabetical order and may include some words/terms not exclusive to the crypto world but may be helpful regardless.
2FA
Two factor authentication. I highly advise that you use it.
51% Attack:
A situation where a single malicious individual or group gains control of more than half of a cryptocurrency network’s computing power. Theoretically, it could allow perpetrators to manipulate the system and spend the same coin multiple times, stop other users from completing blocks and make conflicting transactions to a chain that could harm the network.
Address (or Addy):
A unique string of numbers and letters (both upper and lower case) used to send, receive or store cryptocurrency on the network. It is also the public key in a pair of keys needed to sign a digital transaction. Addresses can be shared publicly as a text or in the form of a scannable QR code. They differ between cryptocurrencies. You can’t send Bitcoin to an Ethereum address, for example.
Altcoin (alternative coin): Any digital currency other than Bitcoin. These other currencies are alternatives to Bitcoin regarding features and functionalities (e.g. faster confirmation time, lower price, improved mining algorithm, higher total coin supply). There are hundreds of altcoins, including Ether, Ripple, Litecoin and many many others.
AIRDROP:
An event where the investors/participants are able to receive free tokens or coins into their digital wallet.
AML: Defines Anti-Money Laundering laws**.**
ARBITRAGE:
Getting risk-free profits by trading (simultaneous buying and selling of the cryptocurrency) on two different exchanges which have different prices for the same asset.
Ashdraked:
Being Ashdraked is essentially a more detailed version of being Zhoutonged. It is when you lose all of your invested capital, but you do so specifically by shorting Bitcoin. The expression “Ashdraked” comes from a story of a Romanian cryptocurrency investor who insisted upon shorting BTC, as he had done so successfully in the past. When the price of BTC rose from USD 300 to USD 500, the Romanian investor lost all of his money.
ATH (All Time High):
The highest price ever achieved by a cryptocurrency in its entire history. Alternatively, ATL is all time low
Bearish:
A tendency of prices to fall; a pessimistic expectation that the value of a coin is going to drop.
Bear trap:
A manipulation of a stock or commodity by investors.
Bitcoin:
The very first, and the highest ever valued, mass-market open source and decentralized cryptocurrency and digital payment system that runs on a worldwide peer to peer network. It operates independently of any centralized authorities
Bitconnect:
One of the biggest scams in the crypto world. it was made popular in the meme world by screaming idiot Carlos Matos, who infamously proclaimed," hey hey heeeey” and “what's a what's a what's up wasssssssssuuuuuuuuuuuuup, BitConneeeeeeeeeeeeeeeeeeeeeeeect!”. He is now in the mentally ill meme hall of fame.
Block:
A package of permanently recorded data about transactions occurring every time period (typically about 10 minutes) on the blockchain network. Once a record has been completed and verified, it goes into a blockchain and gives way to the next block. Each block also contains a complex mathematical puzzle with a unique answer, without which new blocks can’t be added to the chain.
Blockchain:
An unchangeable digital record of all transactions ever made in a particular cryptocurrency and shared across thousands of computers worldwide. It has no central authority governing it. Records, or blocks, are chained to each other using a cryptographic signature. They are stored publicly and chronologically, from the genesis block to the latest block, hence the term blockchain. Anyone can have access to the database and yet it remains incredibly difficult to hack.
Bullish:
A tendency of prices to rise; an optimistic expectation that a specific cryptocurrency will do well and its value is going to increase.
BTFD:
Buy the fucking dip. This advise was bestowed upon us by the gods themselves. It is the iron code to crypto enthusiasts.
Bull market:
A market that Cryptos are going up.
Consensus:
An agreement among blockchain participants on the validity of data. Consensus is reached when the majority of nodes on the network verify that the transaction is 100% valid.
Crypto bubble:
The instability of cryptocurrencies in terms of price value
Cryptocurrency:
A type of digital currency, secured by strong computer code (cryptography), that operates independently of any middlemen or central authoritie
Cryptography:
The art of converting sensitive data into a format unreadable for unauthorized users, which when decoded would result in a meaningful statement.
Cryptojacking:
The use of someone else’s device and profiting from its computational power to mine cryptocurrency without their knowledge and consent.
Crypto-Valhalla:
When HODLers(holders) eventually cash out they go to a place called crypto-Valhalla. The strong will be separated from the weak and the strong will then be given lambos.
DAO:
Decentralized Autonomous Organizations. It defines A blockchain technology inspired organization or corporation that exists and operates without human intervention.
Dapp (decentralized application):
An open-source application that runs and stores its data on a blockchain network (instead of a central server) to prevent a single failure point. This software is not controlled by the single body – information comes from people providing other people with data or computing power.
Decentralized:
A system with no fundamental control authority that governs the network. Instead, it is jointly managed by all users to the system.
Desktop wallet:
A wallet that stores the private keys on your computer, which allow the spending and management of your bitcoins.
DILDO:
Long red or green candles. This is a crypto signal that tells you that it is not favorable to trade at the moment. Found on candlestick charts.
Digital Signature:
An encrypted digital code attached to an electronic document to prove that the sender is who they say they are and confirm that a transaction is valid and should be accepted by the network.
Double Spending:
An attack on the blockchain where a malicious user manipulates the network by sending digital money to two different recipients at exactly the same time.
DYOR:
Means do your own research.
Encryption:
Converting data into code to protect it from unauthorized access, so that only the intended recipient(s) can decode it.
Eskrow:
the practice of having a third party act as an intermediary in a transaction. This third party holds the funds on and sends them off when the transaction is completed.
Ethereum:
Ethereum is an open source, public, blockchain-based platform that runs smart contracts and allows you to build dapps on it. Ethereum is fueled by the cryptocurrency Ether.
Exchange:
A platform (centralized or decentralized) for exchanging (trading) different forms of cryptocurrencies. These exchanges allow you to exchange cryptos for local currency. Some popular exchanges are Coinbase, Bittrex, Kraken and more.
Faucet:
A website which gives away free cryptocurrencies.
Fiat money:
Fiat currency is legal tender whose value is backed by the government that issued it, such as the US dollar or UK pound.
Fork:
A split in the blockchain, resulting in two separate branches, an original and a new alternate version of the cryptocurrency. As a single blockchain forks into two, they will both run simultaneously on different parts of the network. For example, Bitcoin Cash is a Bitcoin fork.
FOMO:
Fear of missing out.
Frictionless:
A system is frictionless when there are zero transaction costs or trading retraints.
FUD:
Fear, Uncertainty and Doubt regarding the crypto market.
Gas:
A fee paid to run transactions, dapps and smart contracts on Ethereum.
Halving:
A 50% decrease in block reward after the mining of a pre-specified number of blocks. Every 4 years, the “reward” for successfully mining a block of bitcoin is reduced by half. This is referred to as “Halving”.
Hardware wallet:
Physical wallet devices that can securely store cryptocurrency maximally. Some examples are Ledger Nano S**,** Digital Bitbox and more**.**
Hash:
The process that takes input data of varying sizes, performs an operation on it and converts it into a fixed size output. It cannot be reversed.
Hashing:
The process by which you mine bitcoin or similar cryptocurrency, by trying to solve the mathematical problem within it, using cryptographic hash functions.
HODL:
A Bitcoin enthusiast once accidentally misspelled the word HOLD and it is now part of the bitcoin legend. It can also mean hold on for dear life.
ICO (Initial Coin Offering):
A blockchain-based fundraising mechanism, or a public crowd sale of a new digital coin, used to raise capital from supporters for an early stage crypto venture. Beware of these as there have been quite a few scams in the past.
John mcAfee:
A man who will one day eat his balls on live television for falsely predicting bitcoin going to 100k. He has also become a small meme within the crypto community for his outlandish claims.
JOMO:
Joy of missing out. For those who are so depressed about missing out their sadness becomes joy.
KYC:
Know your customer(alternatively consumer).
Lambo:
This stands for Lamborghini. A small meme within the investing community where the moment someone gets rich they spend their earnings on a lambo. One day we will all have lambos in crypto-valhalla.
Ledger:
Away from Blockchain, it is a book of financial transactions and balances. In the world of crypto, the blockchain functions as a ledger. A digital currency’s ledger records all transactions which took place on a certain block chain network.
Leverage:
Trading with borrowed capital (margin) in order to increase the potential return of an investment.
Liquidity:
The availability of an asset to be bought and sold easily, without affecting its market price.
of the coins.
Margin trading:
The trading of assets or securities bought with borrowed money.
Market cap/MCAP:
A short-term for Market Capitalization. Market Capitalization refers to the market value of a particular cryptocurrency. It is computed by multiplying the Price of an individual unit of coins by the total circulating supply.
Miner:
A computer participating in any cryptocurrency network performing proof of work. This is usually done to receive block rewards.
Mining:
The act of solving a complex math equation to validate a blockchain transaction using computer processing power and specialized hardware.
Mining contract:
A method of investing in bitcoin mining hardware, allowing anyone to rent out a pre-specified amount of hashing power, for an agreed amount of time. The mining service takes care of hardware maintenance, hosting and electricity costs, making it simpler for investors.
Mining rig:
A computer specially designed for mining cryptocurrencies.
Mooning:
A situation the price of a coin rapidly increases in value. Can also be used as: “I hope bitcoin goes to the moon”
Node:
Any computing device that connects to the blockchain network.
Open source:
The practice of sharing the source code for a piece of computer software, allowing it to be distributed and altered by anyone.
OTC:
Over the counter. Trading is done directly between parties.
P2P (Peer to Peer):
A type of network connection where participants interact directly with each other rather than through a centralized third party. The system allows the exchange of resources from A to B, without having to go through a separate server.
Paper wallet:
A form of “cold storage” where the private keys are printed onto a piece of paper and stored offline. Considered as one of the safest crypto wallets, the truth is that it majors in sweeping coins from your wallets.
Pre mining:
The mining of a cryptocurrency by its developers before it is released to the public.
Proof of stake (POS):
A consensus distribution algorithm which essentially rewards you based upon the amount of the coin that you own. In other words, more investment in the coin will leads to more gain when you mine with this protocol In Proof of Stake, the resource held by the “miner” is their stake in the currency.
PROOF OF WORK (POW) :
The competition of computers competing to solve a tough crypto math problem. The first computer that does this is allowed to create new blocks and record information.” The miner is then usually rewarded via transaction fees.
Protocol:
A standardized set of rules for formatting and processing data.
Public key / private key:
A cryptographic code that allows a user to receive cryptocurrencies into an account. The public key is made available to everyone via a publicly accessible directory, and the private key remains confidential to its respective owner. Because the key pair is mathematically related, whatever is encrypted with a public key may only be decrypted by its corresponding private key.
Pump and dump:
Massive buying and selling activity of cryptocurrencies (sometimes organized and to one’s benefit) which essentially result in a phenomenon where the significant surge in the value of coin followed by a huge crash take place in a short time frame.
Recovery phrase:
A set of phrases you are given whereby you can regain or access your wallet should you lose the private key to your wallets — paper, mobile, desktop, and hardware wallet. These phrases are some random 12–24 words. A recovery Phrase can also be called as Recovery seed, Seed Key, Recovery Key, or Seed Phrase.
REKT:
Referring to the word “wrecked”. It defines a situation whereby an investor or trader who has been ruined utterly following the massive losses suffered in crypto industry.
Ripple:
An alternative payment network to Bitcoin based on similar cryptography. The ripple network uses XRP as currency and is capable of sending any asset type.
ROI:
Return on investment.
Safu:
A crypto term for safe popularized by the Bizonnaci YouTube channel after the CEO of Binance tweeted
“Funds are safe."
“the exchage I use got hacked!”“Oh no, are your funds safu?”
“My coins better be safu!”


Sats/Satoshi:
The smallest fraction of a bitcoin is called a “satoshi” or “sat”. It represents one hundred-millionth of a bitcoin and is named after Satoshi Nakamoto.
Satoshi Nakamoto:
This was the pseudonym for the mysterious creator of Bitcoin.
Scalability:
The ability of a cryptocurrency to contain the massive use of its Blockchain.
Sharding:
A scaling solution for the Blockchain. It is generally a method that allows nodes to have partial copies of the complete blockchain in order to increase overall network performance and consensus speeds.
Shitcoin:
Coin with little potential or future prospects.
Shill:
Spreading buzz by heavily promoting a particular coin in the community to create awareness.
Short position:
Selling of a specific cryptocurrency with an expectation that it will drop in value.
Silk road:
The online marketplace where drugs and other illicit items were traded for Bitcoin. This marketplace is using accessed through “TOR”, and VPNs. In October 2013, a Silk Road was shut down in by the FBI.
Smart Contract:
Certain computational benchmarks or barriers that have to be met in turn for money or data to be deposited or even be used to verify things such as land rights.
Software Wallet:
A crypto wallet that exists purely as software files on a computer. Usually, software wallets can be generated for free from a variety of sources.
Solidity:
A contract-oriented coding language for implementing smart contracts on Ethereum. Its syntax is similar to that of JavaScript.
Stable coin:
A cryptocoin with an extremely low volatility that can be used to trade against the overall market.
Staking:
Staking is the process of actively participating in transaction validation (similar to mining) on a proof-of-stake (PoS) blockchain. On these blockchains, anyone with a minimum-required balance of a specific cryptocurrency can validate transactions and earn Staking rewards.
Surge:
When a crypto currency appreciates or goes up in price.
Tank:
The opposite of mooning. When a coin tanks it can also be described as crashing.
Tendies
For traders , the chief prize is “tendies” (chicken tenders, the treat an overgrown man-child receives for being a “Good Boy”) .
Token:
A unit of value that represents a digital asset built on a blockchain system. A token is usually considered as a “coin” of a cryptocurrency, but it really has a wider functionality.
TOR: “The Onion Router” is a free web browser designed to protect users’ anonymity and resist censorship. Tor is usually used surfing the web anonymously and access sites on the “Darkweb”.
Transaction fee:
An amount of money users are charged from their transaction when sending cryptocurrencies.
Volatility:
A measure of fluctuations in the price of a financial instrument over time. High volatility in bitcoin is seen as risky since its shifting value discourages people from spending or accepting it.
Wallet:
A file that stores all your private keys and communicates with the blockchain to perform transactions. It allows you to send and receive bitcoins securely as well as view your balance and transaction history.
Whale:
An investor that holds a tremendous amount of cryptocurrency. Their extraordinary large holdings allow them to control prices and manipulate the market.
Whitepaper:

A comprehensive report or guide made to understand an issue or help decision making. It is also seen as a technical write up that most cryptocurrencies provide to take a deep look into the structure and plan of the cryptocurrency/Blockchain project. Satoshi Nakamoto was the first to release a whitepaper on Bitcoin, titled “Bitcoin: A Peer-to-Peer Electronic Cash System” in late 2008.
And with that I finally complete my odyssey. I sincerely hope that this helped you and if you are new, I welcome you to crypto. If you read all of that I hope it increased, you in knowledge.
my final definition:
Crypto-Family:
A collection of all the HODLers and crypto fanatics. A place where all people alike unite over a love for crypto.
We are all in this together as we pioneer the new world that is crypto currency. I wish you a great day and Happy HODLing.
-u/flacciduck
feel free to comment words or terms that you feel should be included or about any errors I made.
Edit1:some fixes were made and added words.
submitted by flacciduck to CryptoCurrency [link] [comments]

Proposal: The Sia Foundation

Vision Statement

A common sentiment is brewing online; a shared desire for the internet that might have been. After decades of corporate encroachment, you don't need to be a power user to realize that something has gone very wrong.
In the early days of the internet, the future was bright. In that future, when you sent an instant message, it traveled directly to the recipient. When you needed to pay a friend, you announced a transfer of value to their public key. When an app was missing a feature you wanted, you opened up the source code and implemented it. When you took a picture on your phone, it was immediately encrypted and backed up to storage that you controlled. In that future, people would laugh at the idea of having to authenticate themselves to some corporation before doing these things.
What did we get instead? Rather than a network of human-sized communities, we have a handful of enormous commons, each controlled by a faceless corporate entity. Hey user, want to send a message? You can, but we'll store a copy of it indefinitely, unencrypted, for our preference-learning algorithms to pore over; how else could we slap targeted ads on every piece of content you see? Want to pay a friend? You can—in our Monopoly money. Want a new feature? Submit a request to our Support Center and we'll totally maybe think about it. Want to backup a photo? You can—inside our walled garden, which only we (and the NSA, of course) can access. Just be careful what you share, because merely locking you out of your account and deleting all your data is far from the worst thing we could do.
You rationalize this: "MEGACORP would never do such a thing; it would be bad for business." But we all know, at some level, that this state of affairs, this inversion of power, is not merely "unfortunate" or "suboptimal" – No. It is degrading. Even if MEGACORP were purely benevolent, it is degrading that we must ask its permission to talk to our friends; that we must rely on it to safeguard our treasured memories; that our digital lives are completely beholden to those who seek only to extract value from us.
At the root of this issue is the centralization of data. MEGACORP can surveil you—because your emails and video chats flow through their servers. And MEGACORP can control you—because they hold your data hostage. But centralization is a solution to a technical problem: How can we make the user's data accessible from anywhere in the world, on any device? For a long time, no alternative solution to this problem was forthcoming.
Today, thanks to a confluence of established techniques and recent innovations, we have solved the accessibility problem without resorting to centralization. Hashing, encryption, and erasure encoding got us most of the way, but one barrier remained: incentives. How do you incentivize an anonymous stranger to store your data? Earlier protocols like BitTorrent worked around this limitation by relying on altruism, tit-for-tat requirements, or "points" – in other words, nothing you could pay your electric bill with. Finally, in 2009, a solution appeared: Bitcoin. Not long after, Sia was born.
Cryptography has unleashed the latent power of the internet by enabling interactions between mutually-distrustful parties. Sia harnesses this power to turn the cloud storage market into a proper marketplace, where buyers and sellers can transact directly, with no intermediaries, anywhere in the world. No more silos or walled gardens: your data is encrypted, so it can't be spied on, and it's stored on many servers, so no single entity can hold it hostage. Thanks to projects like Sia, the internet is being re-decentralized.
Sia began its life as a startup, which means it has always been subjected to two competing forces: the ideals of its founders, and the profit motive inherent to all businesses. Its founders have taken great pains to never compromise on the former, but this often threatened the company's financial viability. With the establishment of the Sia Foundation, this tension is resolved. The Foundation, freed of the obligation to generate profit, is a pure embodiment of the ideals from which Sia originally sprung.
The goals and responsibilities of the Foundation are numerous: to maintain core Sia protocols and consensus code; to support developers building on top of Sia and its protocols; to promote Sia and facilitate partnerships in other spheres and communities; to ensure that users can easily acquire and safely store siacoins; to develop network scalability solutions; to implement hardforks and lead the community through them; and much more. In a broader sense, its mission is to commoditize data storage, making it cheap, ubiquitous, and accessible to all, without compromising privacy or performance.
Sia is a perfect example of how we can achieve better living through cryptography. We now begin a new chapter in Sia's history. May our stewardship lead it into a bright future.
 

Overview

Today, we are proposing the creation of the Sia Foundation: a new non-profit entity that builds and supports distributed cloud storage infrastructure, with a specific focus on the Sia storage platform. What follows is an informal overview of the Sia Foundation, covering two major topics: how the Foundation will be funded, and what its funds will be used for.

Organizational Structure

The Sia Foundation will be structured as a non-profit entity incorporated in the United States, likely a 501(c)(3) organization or similar. The actions of the Foundation will be constrained by its charter, which formalizes the specific obligations and overall mission outlined in this document. The charter will be updated on an annual basis to reflect the current goals of the Sia community.
The organization will be operated by a board of directors, initially comprising Luke Champine as President and Eddie Wang as Chairman. Luke Champine will be leaving his position at Nebulous to work at the Foundation full-time, and will seek to divest his shares of Nebulous stock along with other potential conflicts of interest. Neither Luke nor Eddie personally own any siafunds or significant quantities of siacoin.

Funding

The primary source of funding for the Foundation will come from a new block subsidy. Following a hardfork, 30 KS per block will be allocated to the "Foundation Fund," continuing in perpetuity. The existing 30 KS per block miner reward is not affected. Additionally, one year's worth of block subsidies (approximately 1.57 GS) will be allocated to the Fund immediately upon activation of the hardfork.
As detailed below, the Foundation will provably burn any coins that it cannot meaningfully spend. As such, the 30 KS subsidy should be viewed as a maximum. This allows the Foundation to grow alongside Sia without requiring additional hardforks.
The Foundation will not be funded to any degree by the possession or sale of siafunds. Siafunds were originally introduced as a means of incentivizing growth, and we still believe in their effectiveness: a siafund holder wants to increase the amount of storage on Sia as much as possible. While the Foundation obviously wants Sia to succeed, its driving force should be its charter. Deriving significant revenue from siafunds would jeopardize the Foundation's impartiality and focus. Ultimately, we want the Foundation to act in the best interests of Sia, not in growing its own budget.

Responsibilities

The Foundation inherits a great number of responsibilities from Nebulous. Each quarter, the Foundation will publish the progress it has made over the past quarter, and list the responsibilities it intends to prioritize over the coming quarter. This will be accompanied by a financial report, detailing each area of expenditure over the past quarter, and forecasting expenditures for the coming quarter. Below, we summarize some of the myriad responsibilities towards which the Foundation is expected to allocate its resources.

Maintain and enhance core Sia software

Arguably, this is the most important responsibility of the Foundation. At the heart of Sia is its consensus algorithm: regardless of other differences, all Sia software must agree upon the content and rules of the blockchain. It is therefore crucial that the algorithm be stewarded by an entity that is accountable to the community, transparent in its decision-making, and has no profit motive or other conflicts of interest.
Accordingly, Sia’s consensus functionality will no longer be directly maintained by Nebulous. Instead, the Foundation will release and maintain an implementation of a "minimal Sia full node," comprising the Sia consensus algorithm and P2P networking code. The source code will be available in a public repository, and signed binaries will be published for each release.
Other parties may use this code to provide alternative full node software. For example, Nebulous may extend the minimal full node with wallet, renter, and host functionality. The source code of any such implementation may be submitted to the Foundation for review. If the code passes review, the Foundation will provide "endorsement signatures" for the commit hash used and for binaries compiled internally by the Foundation. Specifically, these signatures assert that the Foundation believes the software contains no consensus-breaking changes or other modifications to imported Foundation code. Endorsement signatures and Foundation-compiled binaries may be displayed and distributed by the receiving party, along with an appropriate disclaimer.
A minimal full node is not terribly useful on its own; the wallet, renter, host, and other extensions are what make Sia a proper developer platform. Currently, the only implementations of these extensions are maintained by Nebulous. The Foundation will contract Nebulous to ensure that these extensions continue to receive updates and enhancements. Later on, the Foundation intends to develop its own implementations of these extensions and others. As with the minimal node software, these extensions will be open source and available in public repositories for use by any Sia node software.
With the consensus code now managed by the Foundation, the task of implementing and orchestrating hardforks becomes its responsibility as well. When the Foundation determines that a hardfork is necessary (whether through internal discussion or via community petition), a formal proposal will be drafted and submitted for public review, during which arguments for and against the proposal may be submitted to a public repository. During this time, the hardfork code will be implemented, either by Foundation employees or by external contributors working closely with the Foundation. Once the implementation is finished, final arguments will be heard. The Foundation board will then vote whether to accept or reject the proposal, and announce their decision along with appropriate justification. Assuming the proposal was accepted, the Foundation will announce the block height at which the hardfork will activate, and will subsequently release source code and signed binaries that incorporate the hardfork code.
Regardless of the Foundation's decision, it is the community that ultimately determines whether a fork is accepted or rejected – nothing can change that. Foundation node software will never automatically update, so all forks must be explicitly adopted by users. Furthermore, the Foundation will provide replay and wipeout protection for its hard forks, protecting other chains from unintended or malicious reorgs. Similarly, the Foundation will ensure that any file contracts formed prior to a fork activation will continue to be honored on both chains until they expire.
Finally, the Foundation also intends to pursue scalability solutions for the Sia blockchain. In particular, work has already begun on an implementation of Utreexo, which will greatly reduce the space requirements of fully-validating nodes (allowing a full node to be run on a smartphone) while increasing throughput and decreasing initial sync time. A hardfork implementing Utreexo will be submitted to the community as per the process detailed above.
As this is the most important responsibility of the Foundation, it will receive a significant portion of the Foundation’s budget, primarily in the form of developer salaries and contracting agreements.

Support community services

We intend to allocate 25% of the Foundation Fund towards the community. This allocation will be held and disbursed in the form of siacoins, and will pay for grants, bounties, hackathons, and other community-driven endeavours.
Any community-run service, such as a Skynet portal, explorer or web wallet, may apply to have its costs covered by the Foundation. Upon approval, the Foundation will reimburse expenses incurred by the service, subject to the exact terms agreed to. The intent of these grants is not to provide a source of income, but rather to make such services "break even" for their operators, so that members of the community can enrich the Sia ecosystem without worrying about the impact on their own finances.

Ensure easy acquisition and storage of siacoins

Most users will acquire their siacoins via an exchange. The Foundation will provide support to Sia-compatible exchanges, and pursue relevant integrations at its discretion, such as Coinbase's new Rosetta standard. The Foundation may also release DEX software that enables trading cryptocurrencies without the need for a third party. (The Foundation itself will never operate as a money transmitter.)
Increasingly, users are storing their cryptocurrency on hardware wallets. The Foundation will maintain the existing Ledger Nano S integration, and pursue further integrations at its discretion.
Of course, all hardware wallets must be paired with software running on a computer or smartphone, so the Foundation will also develop and/or maintain client-side wallet software, including both full-node wallets and "lite" wallets. Community-operated wallet services, i.e. web wallets, may be funded via grants.
Like core software maintenance, this responsibility will be funded in the form of developer salaries and contracting agreements.

Protect the ecosystem

When it comes to cryptocurrency security, patching software vulnerabilities is table stakes; there are significant legal and social threats that we must be mindful of as well. As such, the Foundation will earmark a portion of its fund to defend the community from legal action. The Foundation will also safeguard the network from 51% attacks and other threats to network security by implementing softforks and/or hardforks where necessary.
The Foundation also intends to assist in the development of a new FOSS software license, and to solicit legal memos on various Sia-related matters, such as hosting in the United States and the EU.
In a broader sense, the establishment of the Foundation makes the ecosystem more robust by transferring core development to a more neutral entity. Thanks to its funding structure, the Foundation will be immune to various forms of pressure that for-profit companies are susceptible to.

Drive adoption of Sia

Although the overriding goal of the Foundation is to make Sia the best platform it can be, all that work will be in vain if no one uses the platform. There are a number of ways the Foundation can promote Sia and get it into the hands of potential users and developers.
In-person conferences are understandably far less popular now, but the Foundation can sponsor and/or participate in virtual conferences. (In-person conferences may be held in the future, permitting circumstances.) Similarly, the Foundation will provide prizes for hackathons, which may be organized by community members, Nebulous, or the Foundation itself. Lastly, partnerships with other companies in the cryptocurrency space—or the cloud storage space—are a great way to increase awareness of Sia. To handle these responsibilities, one of the early priorities of the Foundation will be to hire a marketing director.

Fund Management

The Foundation Fund will be controlled by a multisig address. Each member of the Foundation's board will control one of the signing keys, with the signature threshold to be determined once the final composition of the board is known. (This threshold may also be increased or decreased if the number of board members changes.) Additionally, one timelocked signing key will be controlled by David Vorick. This key will act as a “dead man’s switch,” to be used in the event of an emergency that prevents Foundation board members from reaching the signature threshold. The timelock ensures that this key cannot be used unless the Foundation fails to sign a transaction for several months.
On the 1st of each month, the Foundation will use its keys to transfer all siacoins in the Fund to two new addresses. The first address will be controlled by a high-security hot wallet, and will receive approximately one month's worth of Foundation expenditures. The second address, receiving the remaining siacoins, will be a modified version of the source address: specifically, it will increase the timelock on David Vorick's signing key by one month. Any other changes to the set of signing keys, such as the arrival or departure of board members, will be incorporated into this address as well.
The Foundation Fund is allocated in SC, but many of the Foundation's expenditures must be paid in USD or other fiat currency. Accordingly, the Foundation will convert, at its discretion, a portion of its monthly withdrawals to fiat currency. We expect this conversion to be primarily facilitated by private "OTC" sales to accredited investors. The Foundation currently has no plans to speculate in cryptocurrency or other assets.
Finally, it is important that the Foundation adds value to the Sia platform well in excess of the inflation introduced by the block subsidy. For this reason, the Foundation intends to provably burn, on a quarterly basis, any coins that it cannot allocate towards any justifiable expense. In other words, coins will be burned whenever doing so provides greater value to the platform than any other use. Furthermore, the Foundation will cap its SC treasury at 5% of the total supply, and will cap its USD treasury at 4 years’ worth of predicted expenses.
 
Addendum: Hardfork Timeline
We would like to see this proposal finalized and accepted by the community no later than September 30th. A new version of siad, implementing the hardfork, will be released no later than October 15th. The hardfork will activate at block 293220, which is expected to occur around 12pm EST on January 1st, 2021.
 
Addendum: Inflation specifics
The total supply of siacoins as of January 1st, 2021 will be approximately 45.243 GS. The initial subsidy of 1.57 GS thus increases the supply by 3.47%, and the total annual inflation in 2021 will be at most 10.4% (if zero coins are burned). In 2022, total annual inflation will be at most 6.28%, and will steadily decrease in subsequent years.
 

Conclusion

We see the establishment of the Foundation as an important step in the maturation of the Sia project. It provides the ecosystem with a sustainable source of funding that can be exclusively directed towards achieving Sia's ambitious goals. Compared to other projects with far deeper pockets, Sia has always punched above its weight; once we're on equal footing, there's no telling what we'll be able to achieve.
Nevertheless, we do not propose this change lightly, and have taken pains to ensure that the Foundation will act in accordance with the ideals that this community shares. It will operate transparently, keep inflation to a minimum, and respect the user's fundamental role in decentralized systems. We hope that everyone in the community will consider this proposal carefully, and look forward to a productive discussion.
submitted by lukechampine to siacoin [link] [comments]

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

My timeline to become a developer!

Hi, I wrote down the steps I went through to get a job. I was lucky to have a family that would support me to just study iOS and not need to work and finally I will start working in the area that I like the most.
28/12/2019 - Bought Angela Yu course on Udemy
17/01/2020 - Started learn iOS 13 & Swift 5 (on MacBook Air 2019)
05/04/2020 - Finished Udemy Course
07/04/2020 - Started study specific topics and make an own BitcoinApp to leaning in practice
17/05/2020 - Bootcamp WeatherApp (jira, gitflow, xib)
15/06/2020 - Started reading Clean Code book
26/06/2020 - Deepening learning of architectures (mvp, viper)
10/07/2020 - Finished Bootcamp, WeatherApp working in MVP
17/07/2020 - Start Learning how to Unit Testing
07/08/2020 - First job attempt, I got to the final stage and I was not hired, if I hadn’t been so nervous and had better knowledge in unit tests I could have been approved.
11/08/2020 - Second job attempt, I took a test that was a quiz about swift and algorithms (was very hard)
21/08/2020 - After doing one more test and some interviews, finally on this day I received the job offer
01/09/2020 - It will be my first day working as an iOS developer, i am very excited!!

[3] items that changed my life:
1. Unlock your mind - Understand that you can learn anything, you just don't know how long it will take
2. Align study and practice - Write the code, do not copy and paste. Read and study the topic even if you don't understand everything completely, pause and go to another source of studies as needed.
3. Spaced repetition - Practice every day, even for a short time. This makes a total difference in learning and memorizing (widely used in language learning with the Anki app)
I hope this helps someone who is starting too :)
submitted by MarPB11 to iOSProgramming [link] [comments]

Checker Thread (A list of hacked clients for easy reference)

Community contribution is the only way this thread will be useful. This is a WIP! More clients will be added as time goes on!
Quick note: The vast majority of these are files supplied by the community -- some may not work. The person who sent me 9b9t says it doesn't work, but I have not personally tested. Please let me know if it works or does not work.

Some additional notes:
I am open to community criticism so long as it can actually be used to benefit the thread. Issues with formatting, approach, client choice, etc. are all great things to come talk to me about so I may improve. However, people keep commenting the same things over and over and over — “VirusTotal can’t catch X” is a popular one — and I don’t have time to deal with it. If you have a security concern, you are more than welcome to raise it. HOWEVER, do not make unreasonable requests of me — I work, in addition to that I have a social life, I have responsibilities at home as well. This is a side thing that I do when I have the time. A lot of people have suggested looking through bytecode to determine if a client is malicious. I do not have the time to do this for every client. If you are willing to help and do more than say “you should do more than you already are, even though you have a job and a life outside of an obscure subreddit,” feel free to DM me. People who take the broken record approach and say things that are already covered in the thread, or refuse to offer help and just post complaints, will be blocked and ignored. I’m all down for making this post better, but I’m not gonna waste my time with people who won’t work with me. Thank you for your help!

BIG THANKS TO u/jpie726 FOR HIS MASSIVE CONTRIBUTIONS! WITHOUT HIM THIS LIST WOULD BE SIGNIFICANTLY LESS EXPANSIVE. GO UPVOTE THIS MAN INTO HEAVEN, HE DESERVES IT!

Eventually I would like to make a Python script that takes care of all the necessary tasks to install these clients. Python itself is available through the Windows Store as well as on Python's website, or through various other installers. It will install any additional dependencies via Pip and will use Curl to retrieve the files. Anyone interested in helping with this script is more than welcome to do so, if you wish. The two options for assisting me would be as follows:
1. You can install Visual Studio Code or Atom and work with me directly through those applications (more details soon™)
2. A GitHub page may be made and you could submit pull requests through that and edit the script alone.

#######################################################################
There is a misconception that I am only here for free paid clients.
1. I can't use a paid client unless I have access to a cracked version, an account, and the HWID bound to said account.
2. People are also saying there's a way for clients to track if someone leaks them. While I suppose this is possible if they bothered to put in the absurd amount of effort it would take, it would give them no benefit and it would do no good as I am not running the software on my desktop -- I am sending the software to VirusTotal, grabbing the SHA-256 checksum, and deleting the file.
3. If all you're going to do is post that "VirusTotal can't catch x" or "muh client" do not waste my time, and don't waste yours. You will be ignored in favor of people who will actually help me construct what I hope to be a megathread for this subreddit, FOR YOU GUYS. I mean jeez, someone's trying to help and half the fucking responses are "muh client" like come on. No wonder this fucking subreddit is dead, sheesh. If someone's trying to help you and you just step on their toes that's just not very cool, not everyone is trying to scam you. I do just be trying to help people who come here doe.
4. If you have concerns, raise them respectfully. Do not attack me, you will be ignored or if I feel so inclined I will give you 110% of the shit you give me right back to you. I will answer questions, I will elaborate on my goals, I will take helpful advice. Everything else will be outright ignored, and misinformation will be countered. That is all, thread below.
#######################################################################

I named this the Checker Thread to make it easy to search for in the subreddit. Enjoy.Below will be a list of hacked clients, with VirusTotal links, SHA-256 hashes, direct download links (skipping ad pages) and eventually features for each client. I'd also like to add what servers they do and don't work on, but I need the community to help with that.
The only client I use is Impact, send me additional clients in the comments and they will be added to this list.

Note about SHA-256 hashes:
SHA-256 hashes are a hash of a file produced algorithmically. This type of hash was developed by the United States National Security Agency, and is typically used to verify that files are what they are supposed to be. Widely used in cryptographic applications such as SSH, APT repositories, transactions on websites, verifying files, Bitcoin, and more. It is very common. This type of cryptographic hash has been in use since 2001. An SHA-256 hash will be the exact same for the same file regardless of the source of the file, so if your hash is different from the one listed here you do not have the legitimate installer OR the hash is not up-to-date.

Note about VirusTotal tests:
Several people have pointed out to me something I feel should be brought up in the main thread. VirusTotal is not a catch-all, just as your typical antivirus software is not a catch-all. It will not catch everything. It should be used as a general guideline only. Clean VirusTotal tests do not guarantee your safety, although if the program passes all ~70 or so antivirus engines it's probably safe to use. Any additional malicious activity should be caught by your antivirus program's heuristics. I take no responsibility for anything that is malicious, but I can say in good conscience that I have done everything I can to ensure that everything on this thread is safe. Keep in mind that programs that trip VirusTotal may still be safe to use, antivirus programs often pick up injectors as malware or Trojans because that's how those types of viruses behave in the real world. Use your best judgement. If your best judgement is not good enough, do not use these programs. You have been warned.

----- C --- L --- I --- E --- N --- T--- S ------ C --- L --- I --- E --- N --- T--- S ------ C --- L --- I --- E --- N --- T--- S -----

Impact | 1.11.2 to 1.15.2 | Java Edition
VirusTotal Link for *.exe Installer | VirusTotal Link for *.jar Installer
SHA-256 Hash: 4EAFFB99759FBD949D0FBEF58AE9CEB45CE8CA2B0D7DC22147D4FF0E46F010EC
Impact triggered 0/72 engines on both installers.
Direct Link to Impact's *.exe Installer | Direct Link to Impact's *.jar Installer
------------------------------------------------------------------------------------------------------------------------------------------------

Sigma | 1.8 to 1.16 | Java Edition
VirusTotal Link for *.jar Installer | VirusTotal Link for the *.zip the Installer is Contained In
SHA-256 Hash for the *.zip file: 3FCD397849358522BF0EEEAF117487DBA860919900A904551DF512BE2C34B48C
Sigma's *.zip file triggered 0/59 engines on the *.zip file.
Sigma's *.jar file triggered 0/60 engines on the *.jar file.
Direct Link to Sigma's *.zip File that Contains the Installer
------------------------------------------------------------------------------------------------------------------------------------------------

9b9t | 1.12.2, needs testing | Java Edition | Forge Mod
VirusTotal Link for the *.jar Forge Mod
SHA-256 Hash: 30E4F2778688D54CE7992AFDE509460A7BDDBDA77800219083D4D12BC696EEA0
9b9t triggered 0/60 engines.
AnonFile link to 9b9t's *.jar Mod
------------------------------------------------------------------------------------------------------------------------------------------------

Ingrosware | 1.12.2 | Java Edition | Forge Mod
VirusTotal Link for the *.jar Forge Mod
SHA-256 Hash: BD1A0F9079F4C834A251163C3A0ECBFF7DFC28AB00CF1C74008AADD042FAD358
Ingrosware triggered 0/59 engines.
AnonFile link to a pre-built *.jar Mod
Note: Ingrosware is open source, and is available on GitHub. If you want to build it yourself, you can do so here.
------------------------------------------------------------------------------------------------------------------------------------------------

Mercury | 1.12.2 | Java Edition | Forge Mod
VirusTotal Link for the *.jar Forge Mod
SHA-256 Hash: 70E585A94218149970410ACAE5BE7C1C1B731140F1AF55FE2D1292B1CA74DCB9
Mercury triggered 0/60 engines.
AnonFile link to Mercury's *.jar Mod
------------------------------------------------------------------------------------------------------------------------------------------------

Atlas | 1.12.2 | Java Edition | Forge Mod | Use with caution!
VirusTotal Link for the *.jar Forge Mod
SHA-256 Hash: 7AEB7220CBD5D7C4E4421A940357F14EC70B18DB905469E288529FE3A2C04D57
Note: The file is called AceHackGold-n3.0-release.jar in VirusTotal. The client is identified as Atlas in the .nfo file it came bundled with.
Atlas triggered 7/59 engines.
Note: Upon closer inspection of the VirusTotal scan, the client appears to be of the injected flavor. Injectors are commonly a false positive Trojan. The client appears to be safe, and there was nothing particularly noteworthy in the VirusTotal scan that is atypical for an injector. While this makes the file appear to be safe, use with caution.
AnonFile Link for the *.jar Mod
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
Note 2: The file downloaded is called AceHackGold-n3.0-release.jar*, I'm not sure why. This file was community-sourced, but it has been inspected in the same manner as all the others*.
------------------------------------------------------------------------------------------------------------------------------------------------

Atom | 1.12.2 | Java Edition | Forge Mod | Use with extreme caution!
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: 3B43F952EB5B14F2B01592057B27E92B0E38B6874EA10B8E893BFCBC71463377
Note: The file is called output.157312297.txt in VirusTotal. In addition, VirusTotal identifies the file type properly (\.zip).*
Atom triggered 9/59 engines.
Note: Upon closer inspection of the VirusTotal scan, the client accesses numerous registry keys, which is a behavior I personally would consider to be unnecessary and incredibly suspicious. You can find more information in the VirusTotal scan. The client also exhibits typical Trojan false-positives.
AnonFile Link for the *.zip File
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
Use this client with extreme caution. There are behaviors that I consider to be extremely suspicious, you must determine for yourself if it's safe to use however. This may just be how the client works. I do not know, and I can't be bothered to test it.
------------------------------------------------------------------------------------------------------------------------------------------------

Aurora | 1.12.2 | Java Edition | Forge Mod
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: 9A66929B629AB076383340D33E0EF9B8CE221679EF79315240EA6C760651A533
Aurora triggered 0/61 engines.
AnonFile Link for the *.zip File
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
------------------------------------------------------------------------------------------------------------------------------------------------

CandyCat | 1.12.2 | Java Edition | Forge Mod | Use with caution!
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: 8CEC2F9F28AA3957504E0CC66BF1516080C7BAC50EADB54DC6DD97E0E6E9C745
CandyCat triggered 9/61 engines.
Note: Upon closer inspection of the VirusTotal scan, the client appears to be of the injected flavor. Injectors are commonly a false positive Trojan. The client appears to be safe, and there was nothing particularly noteworthy in the VirusTotal scan that is atypical for an injector. While this makes the file appear to be safe, use with caution.
AnonFile Link for the *.zip File
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
------------------------------------------------------------------------------------------------------------------------------------------------

DayNightGod | 1.12.2 | Java Edition | Forge Mod | Use with caution!
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: 9CEEB43476B18149C0DA76B7AE94713AAF60ED4D2BFD2339E863CC46A1808A0D
DayNightGod triggered 1/59 engines.
Note: Upon closer inspection, only one engine was triggered. The client did not trigger the usual false-positives of a Trojan, use with caution.
AnonFile Link for the *.zip File
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
------------------------------------------------------------------------------------------------------------------------------------------------

HyperLethal | 1.12.2 | Java Edition | Forge Mod | Use with caution!
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: 77FACC1FDB0415438963CCC8DDB4081958563AAA962CE9C024E5063DA32E8FAD
HyperLethal triggered 2/59 engines.
Note: Upon closer inspection of the VirusTotal scan, the client appears to be of the injected flavor. Injectors are commonly a false positive Trojan. The client appears to be safe, and there was nothing particularly noteworthy in the VirusTotal scan that is atypical for an injector. While this makes the file appear to be safe, use with caution.
AnonFile Link for the *.zip File
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
------------------------------------------------------------------------------------------------------------------------------------------------

LoveClient | 1.12.2 | Java Edition | Forge Mod | Use with extreme caution!
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: C71EC42FF612D75CB7AA21B8400D164A74AAD9BB65D2DFEE232461DAF98034C2
LoveClient triggered 9/61 engines.
Note: Upon closer inspection of the VirusTotal scan, the client accesses numerous registry keys, which is a behavior I personally would consider to be unnecessary and incredibly suspicious. You can find more information in the VirusTotal scan. The client also exhibits typical Trojan false-positives.
AnonFile Link for the *.zip File
Use this client with extreme caution. There are behaviors that I consider to be extremely suspicious, you must determine for yourself if it's safe to use however. This may just be how the client works. I do not know, and I can't be bothered to test it.
------------------------------------------------------------------------------------------------------------------------------------------------

SnowHack | 1.12.2 | Java Edition | Forge Mod
VirusTotal Link for the *.zip the Forge Mod is Contained In
SHA-256 Hash: 7100C8D59CE06B279F7D03D834FC2C361F10BEAE913575FC7EFA74E498167D2C
SnowHack triggered 10/62 engines.
Note: Upon closer inspection of the VirusTotal scan, the client appears to be of the injected flavor. Injectors are commonly a false positive Trojan. The client appears to be safe, and there was nothing particularly noteworthy in the VirusTotal scan that is atypical for an injector. While this makes the file appear to be safe, use with caution.
AnonFile Link for the *.zip File
Note: This is a cracked client! The crack is pre-done, so no additional work is required to use -- just put it in your Forge Mods folder and click play.
------------------------------------------------------------------------------------------------------------------------------------------------
submitted by Daemris to minecraftclients [link] [comments]

Mainnet beta v1 p2p Release

Mainnet beta v1 p2p Release
Libonomy is one of a kind blockchain which through innovation and creativity has achieved all the set goals with great success. The kind of innovation that attracts and reaches out to masses of people who have knowledge and understanding that this system is fulfilling its role of greatness. Many only talk about the next level blockchain technology that would fix all the existing problems all in one, Libonomy is already on a road to fulfill this ideology.
We are designing and coding an autonomous blockchain that will run on first ever AI based consensus algorithm, which will make Libonomy world’s first every autonomous, interoperable and scalable blockchain. To learn more about Libonomy visit website and read this.
Mainnet Beta v1

Benefits

The major difference is that Libonomy Blockchain resolves the issues previous consensus algorithms that have been used for a very long time. All of these consensus algorithms have their own drawbacks, Libonomy believes in providing an error-free consensus engine that has been architecture very carefully. It uses Artificial Intelligence – automated, computer generated engine that saves time, energy and gives high throughput, is scalable, interoperable and autonomous.

Project Status

We are working hard towards our first patch - which is public mainnet beta release running Libonomy AI consensus algorithm. In the upcoming days our team will be release the full node running the consensus algorithm with which users will be able to carry out the transactions on their local systems as well.

Important

The current release interacts with staking consensus through our AI protocol so as to ensure that current community acceptance is achieved and in the later upgrades Libonomy will deprecate such systems.

Technical information

Repository
This repository contains the necessary configurations and instruction required in order to interact with Libonomy mainnet-beta-release-v1 for the developer community. It is to inform that all the necessary deployment required to run our mainnet network protocol is up and running with all the proper configurations. Currently the configure nodes are around 15 which are running virtually on some machines, but the nodes are configured in multiple regions.
In order to use commands on network developer community can download our mainnet build file for Linux which is present in this repository and use wallet-CLI repository to make commands. Further release of the mainnet from next week will include our mainnet node release for developers in which we will make our mainnet crypto currency code open source and they can then use our code as well or even can make run time build.
This node is referred to as Libonomy mainnet daemon. Just like bitcoin or other crypto currency who use daemon as a service. Likewise, Libonomy provides community with daemon service as well.
However, our next release will be configured in a way that our AI protocol is connected with Staking Consensus protocol so the community who don’t have a lot of knowledge about Aphelion protocol can make use of their staking blockchain knowledge for carrying out validation activities on Libonomy as well.
This release also comes with compatibility of smart contract which will be interoperable with Ethereum in its release of next month. Which means that when Libonomy will demonstrate its blockchain reboot the current blockchain will never get affected or even the smart contracts. This reboot feature can be regarded as first blockchain which can even reboot itself without creating a fork or disrupting the current running network.
It should also be highlighted that Libonomy is actively making its releases and necessary upgrades in its systems so in case of any inconsistency the community is advised to open issues on the relevant repository of GitHub or on Discord. Kindly also stay updated with our social media and developer community pages as well.
submitted by Libonomy to Libonomy [link] [comments]

Zano Newcomers Introduction/FAQ - please read!

Welcome to the Zano Sticky Introduction/FAQ!

https://preview.redd.it/al1gy9t9v9q51.png?width=424&format=png&auto=webp&s=b29a60402d30576a4fd95f592b392fae202026ca
Hopefully any questions you have will be answered by the resources below, but if you have additional questions feel free to ask them in the comments. If you're quite technically-minded, the Zano whitepaper gives a thorough overview of Zano's design and its main features.
So, what is Zano? In brief, Zano is a project started by the original developers of CryptoNote. Coins with market caps totalling well over a billion dollars (Monero, Haven, Loki and countless others) run upon the codebase they created. Zano is a continuation of their efforts to create the "perfect money", and brings a wealth of enhancements to their original CryptoNote code.
Development happens at a lightning pace, as the Github activity shows, but Zano is still very much a work-in-progress. Let's cut right to it:
Here's why you should pay attention to Zano over the next 12-18 months. Quoting from a recent update:
Anton Sokolov has recently joined the Zano team. ... For the last months Anton has been working on theoretical work dedicated to log-size ring signatures. These signatures theoretically allows for a logarithmic relationship between the number of decoys and the size/performance of transactions. This means that we can set mixins at a level from up to 1000, keeping the reasonable size and processing speed of transactions. This will take Zano’s privacy to a whole new level, and we believe this technology will turn out to be groundbreaking!
If successful, this scheme will make Zano the most private, powerful and performant CryptoNote implementation on the planet. Bar none. A quantum leap in privacy with a minimal increase in resource usage. And if there's one team capable of pulling it off, it's this one.

What else makes Zano special?

You mean aside from having "the Godfather of CryptoNote" as the project lead? ;) Actually, the calibre of the developers/researchers at Zano probably is the project's single greatest strength. Drawing on years of experience, they've made careful design choices, optimizing performance with an asynchronous core architecture, and flexibility and extensibility with a modular code structure. This means that the developers are able to build and iterate fast, refining features and adding new ones at a rate that makes bigger and better-funded teams look sluggish at best.
Zano also has some unique features that set it apart from similar projects:
Privacy Firstly, if you're familiar with CryptoNote you won't be surprised that Zano transactions are private. The perfect money is fungible, and therefore must be untraceable. Bitcoin, for the most part, does little to hide your transaction data from unscrupulous observers. With Zano, privacy is the default.
The untraceability and unlinkability of Zano transactions come from its use of ring signatures and stealth addresses. What this means is that no outside observer is able to tell if two transactions were sent to the same address, and for each transaction there is a set of possible senders that make it impossible to determine who the real sender is.
Hybrid PoW-PoS consensus mechanism Zano achieves an optimal level of security by utilizing both Proof of Work and Proof of Stake for consensus. By combining the two systems, it mitigates their individual vulnerabilities (see 51% attack and "nothing at stake" problem). For an attack on Zano to have even a remote chance of success the attacker would have to obtain not only a majority of hashing power, but also a majority of the coins involved in staking. The system and its design considerations are discussed at length in the whitepaper.
Aliases Here's a stealth address: ZxDdULdxC7NRFYhCGdxkcTZoEGQoqvbZqcDHj5a7Gad8Y8wZKAGZZmVCUf9AvSPNMK68L8r8JfAfxP4z1GcFQVCS2Jb9wVzoe. I have a hard enough time remembering my phone number. Fortunately, Zano has an alias system that lets you register an address to a human-readable name. (@orsonj if you want to anonymously buy me a coffee)
Multisig
Multisignature (multisig) refers to requiring multiple keys to authorize a Zano transaction. It has a number of applications, such as dividing up responsibility for a single Zano wallet among multiple parties, or creating backups where loss of a single seed doesn't lead to loss of the wallet.
Multisig and escrow are key components of the planned Decentralized Marketplace (see below), so consideration was given to each of them from the design stages. Thus Zano's multisig, rather than being tagged on at the wallet-level as an afterthought, is part of its its core architecture being incorporated at the protocol level. This base-layer integration means months won't be spent in the future on complicated refactoring efforts in order to integrate multisig into a codebase that wasn't designed for it. Plus, it makes it far easier for third-party developers to include multisig (implemented correctly) in any Zano wallets and applications they create in the future.
(Double Deposit MAD) Escrow
With Zano's escrow service you can create fully customizable p2p contracts that are designed to, once signed by participants, enforce adherence to their conditions in such a way that no trusted third-party escrow agent is required.
https://preview.redd.it/jp4oghyhv9q51.png?width=1762&format=png&auto=webp&s=12a1e76f76f902ed328886283050e416db3838a5
The Particl project, aside from a couple of minor differences, uses an escrow scheme that works the same way, so I've borrowed the term they coined ("Double Deposit MAD Escrow") as I think it describes the scheme perfectly. The system requires participants to make additional deposits, which they will forfeit if there is any attempt to act in a way that breaches the terms of the contract. Full details can be found in the Escrow section of the whitepaper.
The usefulness of multisig and the escrow system may not seem obvious at first, but as mentioned before they'll form the backbone of Zano's Decentralized Marketplace service (described in the next section).

What does the future hold for Zano?

The planned upgrade to Zano's privacy, mentioned at the start, is obviously one of the most exciting things the team is working on, but it's not the only thing.
Zano Roadmap
Decentralized Marketplace
From the beginning, the Zano team's goal has been to create the perfect money. And money can't just be some vehicle for speculative investment, money must be used. To that end, the team have created a set of tools to make it as simple as possible for Zano to be integrated into eCommerce platforms. Zano's API’s and plugins are easy to use, allowing even those with very little coding experience to use them in their E-commerce-related ventures. The culmination of this effort will be a full Decentralized Anonymous Marketplace built on top of the Zano blockchain. Rather than being accessed via the wallet, it will act more as a service - Marketplace as a Service (MAAS) - for anyone who wishes to use it. The inclusion of a simple "snippet" of code into a website is all that's needed to become part a global decentralized, trustless and private E-commerce network.
Atomic Swaps
Just as Zano's marketplace will allow you to transact without needing to trust your counterparty, atomic swaps will let you to easily convert between Zano and other cyryptocurrencies without having to trust a third-party service such as a centralized exchange. On top of that, it will also lead to the way to Zano's inclusion in the many decentralized exchange (DEX) services that have emerged in recent years.

Where can I buy Zano?

Zano's currently listed on the following exchanges:
https://coinmarketcap.com/currencies/zano/markets/
It goes without saying, neither I nor the Zano team work for any of the exchanges or can vouch for their reliability. Use at your own risk and never leave coins on a centralized exchange for longer than necessary. Your keys, your coins!
If you have any old graphics cards lying around(both AMD & NVIDIA), then Zano is also mineable through its unique ProgPowZ algorithm. Here's a guide on how to get started.
Once you have some Zano, you can safely store it in one of the desktop or mobile wallets (available for all major platforms).

How can I support Zano?

Zano has no marketing department, which is why this post has been written by some guy and not the "Chief Growth Engineer @ Zano Enterprises". The hard part is already done: there's a team of world class developers and researchers gathered here. But, at least at the current prices, the team's funds are enough to cover the cost of development and little more. So the job of publicizing the project falls to the community. If you have any experience in community building/growth hacking at another cryptocurrency or open source project, or if you're a Zano holder who would like to ensure the project's long-term success by helping to spread the word, then send me a pm. We need to get organized.
Researchers and developers are also very welcome. Working at the cutting edge of mathematics and cryptography means Zano provides challenging and rewarding work for anyone in those fields. Please contact the project's Community Manager u/Jed_T if you're interested in joining the team.
Social Links:
Twitter
Discord Server
Telegram Group
Medium blog
I'll do my best to keep this post accurate and up to date. Message me please with any suggested improvements and leave any questions you have below.
Welcome to the Zano community and the new decentralized private economy!
submitted by OrsonJ to Zano [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

I built a decentralized legal-binding smart contract system. I need peer reviewers and whitepaper proof readers. Help greatly appreciated!

I posted this on /cryptotechnology . It attracted quite a bit of upvotes but not many potential contributors. Someone mentioned I should try this sub. I read the rules and it seems to fit within them. Hope this kind of post is alright here...
EDIT: My mother language is french (I'm from Montreal/Canada). Please excuse any blatant grammatical errors.
TLDR: I built a decentralized legal-binding smart contract system. I need peer reviewers and whitepaper proof readers. If you're interested, send me an email to discuss: [email protected] . Thanks in advance!
Hi guys,
For the last few years, I've been working on a decentralized legal-binding contract system. Basically, I created a PoW blockchain software that can receive a hash as an address, and another hash as a bucket, in each transaction.
The address hash is used to tell a specific entity (application/contract/company/person, etc) that uses the blockchain that this transaction might be addressed to them. The bucket hash simply tells the nodes which hashtree of files they need to download in order to execute that contract.
The buckets are shared within the network of nodes. Someone could, for example, write a contract with a series of nodes in order to host their data for them. Buckets can hold any kind of data, and can be of any size... including encrypted data.
The blockchain's blocks are chained together using a mining system similar to bitcoin (hashcash algorithm). Each block contains transactions. The requested difficulty increases when the amount of transactions in a block increases, linearly. Then, when a block is mined properly, another smaller mining effort is requested to link the block to the network's head block.
To replace a block, you need to create another block with more transactions than the amount that were transacted in and after the mined block.
I expect current payment processors to begin accepting transactions and mine them for their customers and make money with fees, in parallel. Using such a mechanism, miners will need to have a lot of bandwidth available in order to keep downloading the blocks of other miners, just like the current payment processors.
The contracts is code written in our custom programming language. Their code is pushed using a transaction, and hosted in buckets. Like you can see, the contract's data are off-chain, only its bucket hash is on-chain. The contract can be used to listen to events that occurs on the blockchain, in any buckets hosted by nodes or on any website that can be crawled and parsed in the contract.
There is also an identity system and a vouching system...which enable the creation of soft-money (promise of future payment in hard money (our cryptocurrency) if a series of events arrive).
The contracts can also be compiled to a legal-binding framework and be potentially be used in court. The contracts currently compile to english and french only.
I also built a browser that contains a 3D viewport, using OpenGL. The browser contains a domain name system (DNS) in form of contracts. Anyone can buy a new domain by creating a transaction with a bucket that contains code to reserve a specific name. When a user request a domain name, it discovers the bucket that is attached to the domain, download that bucket and executes its scripts... which renders in the 3D viewport.
When people interact with an application, the application can create contracts on behalf of the user and send them to the blockchain via a transaction. This enables normal users (non-developers) to interact with others using legal contracts, by using a GUI software.
The hard money (cryptocurrency) is all pre-mined and will be sold to entities (people/company) that want to use the network. The hard money can be re-sold using the contract proposition system, for payment in cash or a bank transfer. The fiat funds will go to my company in order to create services that use this specific network of contracts. The goal is to use the funds to make the network grow and increase its demand in hard money. For now, we plan to create:
A logistic and transportation company
A delivery company
A company that buy and sell real estate options
A company that manage real estate
A software development company
A world-wide fiat money transfer company
A payment processor company
We chose these niche because our team has a lot of experience in these areas: we currently run companies in these fields. These niche also generate a lot of revenue and expenses, making the value of exchanges high. We expect this to drive volume in contracts, soft-money and hard-money exchanges.
We also plan to use the funds to create a venture capital fund that invests in startups that wants to create contracts on our network to execute a specific service in a specific niche.
I'm about to release the software open source very soon and begin executing our commercial activities on the network. Before launching, I'd like to open a discussion with the community regarding the details of how this software works and how it is explained in the whitepaper.
If you'd like to read the whitepaper and open a discussion with me regarding how things work, please send me an email at [email protected] .
If you have any comment, please comment below and Ill try to answer every question. Please note that before peer-reviewing the software and the whitepaper, I'd like to keep the specific details of the software private, but can discuss the general details. A release date will be given once my work has been peer reviewed.
Thanks all in advance!
P.S: This project is not a competition to bitcoin. My goal with this project is to enable companies to write contracts together, easily follow events that are executed in their contracts, understand what to expect from their partnership and what they need to give in order to receive their share of deals... and sell their contracts that they no longer need to other community members.
Bitcoin already has a network of people that uses it. It has its own value. In fact, I plan to create contracts on our network to exchange value from our network for bitcoin and vice-versa. Same for any commodity and currency that currently exits in this world.
submitted by steve-rodrigue to compsci [link] [comments]

Consensus Algorithms, Blockchain Technology and Bitcoin ... Bitcoin Trader  Bitcoin Code  Höhle der Löwen  Frank ... Bitcoin Code Fake - YouTube The Bitcoin Code Erfahrungen First look at the Bitcoin source code - YouTube

Wie funktioniert die Bitcoin Code App? Für alle Finanzmärkte gelten komplexe mathematische Strukturen. Für die Anleger bedeutet das, dass es unmöglich ist, sämtliche möglichen Wahrscheinlichkeitsrechnung in ihre Handelsentscheidungen einfließen zu lassen.Sie müssen sich also diverse Statistiken und Charts zu Hilfe nehmen, welche ihnen beispielsweise der eigene Broker zur Verfügung stellt. Bitcoin uses: SHA256(SHA256(Block_Header)) but you have to be careful about byte-order. For example, this python code will calculate the hash of the block with the smallest hash as of June 2011, Block 125552. The header is built from the six fields described above, concatenated together as little-endian values in hex notation: Bitcoin Algorithm Explained. Founded by a pseudonymous individual or group, Bitcoin is a peer-to-peer digital currency that is designed to serve as a medium of exchange for the purchase of goods and services. With Bitcoin, individuals are able to execute cross-border digital payments at virtually no cost, all without having to involve any financial intermediaries. The Bitcoin algorithm releases some Bitcoin to a winning member of its network every 10 minutes, with a maximum supply to be reached in about 122 years. This release schedule also controls ... Download der Software mit dem Bitcoin Source Code. Eintragen der E-Mail-Adresse und persönlichen Daten in der Anmeldemaske sowie Festlegen von Benutzername und persönlichem Passwort. Einzahlung der Mindesteinlage von 250 Euro. Hierzu kann eine Kreditkarte oder Banküberweisung genutzt werden. Mit dem Handeln beginnen oder erst einmal mit dem Demokonto üben ; Tipp: Am besten vorher das ...

[index] [49283] [32263] [21104] [45131] [28766] [43014] [4000] [38099] [3675] [49571]

Consensus Algorithms, Blockchain Technology and Bitcoin ...

Jetzt mit Mörschendaising: https://bit.ly/2HADB7O Wer auf -- MEHR ANZEIGEN -- klickt bekommt mehr angezeigt! -----... Bitcoin Code ist seit einiger Zeit ein zugleich bekanntes als auch geheimes Projekt. Im Netz wird hitzig darüber diskutiert, ob Bitcoin Code Scam ist oder ni... ----- Bitcoin Source Codes ----- The bitcoin Github release page - versions 0.1.5 to 0.15: https://github.com/bitcoin/bitcoin/releases A copy of the first or... Cryptocurrency can be a high-risk, high-reward game for those willing to deal with the volatility. Can we use AI to help us make predictions about Bitcoin's ... Bitcoin Code ist seit einiger Zeit ein zugleich bekanntes als auch geheimes Projekt. Im Netz wird hitzig darüber diskutiert, ob Bitcoin Code Scam ist oder ni...

#